99精品热爱在线观看视频,国产成人福利资源在线,成年美女黄网色大观看全,狠狠色综合激情丁香五月,777奇米电影网99久久,精品国际久久久久999,成人无码午夜成人无码免费视频

筆趣閣 - 玄幻小說 - 走進(jìn)不科學(xué)在線閱讀 - 第684節(jié)

第684節(jié)

書迷正在閱讀:飛劍問道、三寸人間、天道圖書館、天下第九、圣墟元尊、升邪斗破蒼穹、凡人修仙傳
    當(dāng)時徐云忽略了這個思路,但如今想來……

    顯然是可以的。

    比如眼前的這份——

    《有關(guān)奇完全數(shù)不存在的證明》。

    這份手稿證明了奇完全數(shù)并不存在,也就是說所有的完全數(shù)都是偶完全數(shù)。

    而在數(shù)學(xué)領(lǐng)域。

    提到偶完全數(shù),就不得不提到另一個概念:

    梅森素數(shù)。

    梅森素數(shù)是梅森數(shù)的一個概念。

    所謂梅森數(shù),是指形如2p-1的一類數(shù),其中指數(shù)p是素數(shù),常記為mp。

    如果梅森數(shù)是素數(shù),就稱為梅森素數(shù)。

    目前發(fā)現(xiàn)的所有完全數(shù)都是偶完全數(shù),并且和梅森素數(shù)一一對應(yīng),無一例外。

    也就是找到了多少個梅森素數(shù),便有多少個完全數(shù)。

    因此一直以來。

    是否存在無窮多個梅森素數(shù)這個問題,始終都是是數(shù)論中未解決的著名難題之一。

    或者再準(zhǔn)確一點(diǎn)來說。

    是否存在奇完全數(shù),本身就是梅森素數(shù)延展出來的一個枝干問題。

    截止到2022年。

    全球只發(fā)現(xiàn)了51個梅森素數(shù),最大的是m82589933,也就是即2^82589933-1。

    如果說《有關(guān)奇完全數(shù)不存在的證明》是個需要同階段……也就是四年內(nèi)其他人也撲街才有機(jī)會提得菲爾茲獎的運(yùn)氣型論文

    那么如果能解決梅森素數(shù)的問題,則無疑是個標(biāo)準(zhǔn)的菲爾茲獎成果。

    當(dāng)然了。

    前提是別有人搞出了費(fèi)馬素數(shù)或者黎曼猜想啥的。

    與此同時。

    菲爾茲獎雖然是數(shù)學(xué)界的最高榮譽(yù)之一,但它的評獎要求卻有一個年齡限制——只授予年齡在40歲以下的‘年輕人’。

    因此比起沃爾夫獎和阿貝爾獎,菲爾茲相對要年輕一些。

    目前菲爾茲獎最年輕的獲獎?wù)呤亲專ぐ枴と麪?,得獎年齡28歲。

    而菲爾茲獎四年頒發(fā)一次,今年的獲獎名單已經(jīng)在8月份出爐。

    所以榮譽(yù)上來說,徐云如果能獲獎,領(lǐng)獎時間也要等到2026年。

    屆時徐云同樣是28歲,完全不會顯得突兀。

    并且獲獎和熱度是兩個概念,即便是2026年才頒獎,徐云只要將相關(guān)成果發(fā)出去,該有的報道依舊會有。

    熱度源自期刊,榮譽(yù)才源自獎項(xiàng)。

    這股熱度要低于重力梯度儀,但卻要高于《有關(guān)奇完全數(shù)不存在的證明》和神王星。

    配合上科大接下來的cao作,無疑是個極佳的輔助手段。

    當(dāng)然了。

    這一切的前提,乃是徐云能夠證明梅森素數(shù)的無窮性。

    正因于此……

    這一次……

    他直接拿出了小麥的思維卡。

    ……

    考慮到今天處理了太多事情,身體有些疲乏。

    所以徐云并沒有急著立刻開始‘請神’。

    他先是簡單沖了個澡,上床睡了個午覺。

    一直到下午四點(diǎn)多的時候,方才醒了過來。

    鎖好房門,給老蘇發(fā)了個回來后不用喊自己吃晚飯的微信。

    隨后才來到了自己的書桌邊。

    當(dāng)初徐云曾經(jīng)用過小牛的思維卡,俗話說一回生二回熟,這次他的心態(tài)就要平和很多了。

    一切準(zhǔn)備就緒后。

    徐云鄭重的拿起了小麥思維卡,暗念了一聲……

    “激活!”

    刷——

    代表著小麥的卡片緩緩消失。

    在某個徐云看不見的視野內(nèi)。

    他的背后悄然出現(xiàn)了一道人像墻。

    墻上刻著古往今來無數(shù)數(shù)學(xué)家的名字,有歐拉、有黎曼、有狄利克雷等等……

    最下方還有著徐云的小初高老師……

    片刻之后。

    最上方的區(qū)域緩緩發(fā)出了金光,一個名字悄然在空氣中浮現(xiàn):

    james clerk maxwell。

    過了一會兒。

    一位面色略顯蒼白、身形瘦弱、蓄著一縷大胡子、腰間別著一把斧頭的中年人虛影從中走出。

    只見他凝視了徐云兩秒鐘,接著化作金光飛進(jìn)了徐云體內(nèi)。

    與此同時。

    徐云的眼中驟然一清,發(fā)現(xiàn)自己的思緒再次開闊了起來。

    過了幾秒鐘。

    他看著自己的手掌,面帶感慨的嘆息一聲:

    “好久不見了,小麥。”

    隨后他用力甩了甩頭,飛快的將思緒聚焦到了面前的高斯手稿上。

    稍作猶豫,便提筆飛快的寫了起來:

    “解:”

    “引理:若n>1,a^n-1是素數(shù),則a=2,n是素數(shù)?!?/br>
    “……當(dāng)n>1時,若a>2,則a^n-1=(a-1)(a^n-1+a^n-2+a^n-3+……+a+1)……”

    “可知a^n-1是合數(shù),所以a=2?!?/br>
    “若n是合數(shù),n=xy,x>1,y>1,于是有2^xy-1=(2^x-1)(2^x(y-1)+2^x(y-2)+2^x(y-3)+……+1)”

    “由此可知2^n-1是合數(shù)?!?/br>
    寫完這些。

    徐云微微頓了頓,將高斯的手稿挪到了手邊。

    “由不存在奇完全數(shù)可知,設(shè)正整數(shù)n有素因子分解n=p^(a1/1)p^(a2/2)p^(a3/3)……p^(as/s)。”

    “由于因子和函數(shù)σ是乘性函數(shù),那么可得:”

    “σ(n)={p^(a1+1/1)-1}/{p1-1}·{p^(a2+2/1)-1}/{p2-1}·{p^(a3+3/1)-1}/{p3-1}……·{p^(as+s/1)-1}/{ps-1}=snj1·{p^(aj+j/1)-1}/{pj-1}……”

    ……

    就這樣。

    徐云洋洋灑落的在a4紙上飛快書寫,時間也一分一秒的緩緩流逝。

    塔形數(shù)……

    排中律……

    單未知數(shù)……

    徐云仿佛回到了1850年的劍橋大學(xué),當(dāng)時他也是這樣坐在書桌邊和小麥討論著各種問題。

    只是當(dāng)初徐云是老師,小麥?zhǔn)菍W(xué)生。

    而這一次……

    徐云變成了學(xué)生,小麥則成為了老師。

    一個小時后。

    徐云的筆尖微微一頓,寫下了最后一行字:

    “綜上所述,故……存在無窮多個梅森素數(shù)?!?/br>
    與此同時。

    他的身子莫名一震。

    原本急速轉(zhuǎn)動的思緒,驟然停止了下來。

    過了幾秒鐘。

    徐云輕輕呼出了口綿長的氣息,帶著感慨,帶著追憶。

    “多謝你了,麥克斯韋……”